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Outline:
• Motivation
• Dynamics of Systems
• Active Control Concepts
• Active Control Examples
• Modern Control Approaches
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Fundamentals of Microgravity Vibration Isolation

• The ambient spacecraft acceleration levels are often 
higher than allowable from a science perspective.
• To reduce the acceleration levels to an acceptably 
quiescent level requires vibration isolation.
• Either passive or active isolation can be used 
depending on the needs or requirements of a specific 
application.

Introduction
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What is Vibration Isolation?

Vehicle Work 
Volume Floor

Isolation System
Payload Mounting
Structure

Accelerations of
Floor

Fluids & Combustion
Experiment

. .

Isolated Experiment
Accelerations



March 8, 2001 MEIT-2001 / Section 17 / Page 5

Fundamentals of Microgravity Vibration Isolation

QA-3000
Accels

accelerations

Isolation System

Position 
Sensor

relative
positionsVibration

Position
Control Law

Reference
Position
Command

+
-

• Low Frequency Position Control Loop:
• Maintains Centering
• Allows quasi-steady accel estimation  

Acceleration
Control Law

Reference
Acceleration
Command
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• High Frequency Acceleration Control Loop:
• Cancels Inertial Motion of the Platform
• Allows “Good Vibrations”



March 8, 2001 MEIT-2001 / Section 17 / Page 6

Fundamentals of Microgravity Vibration Isolation

Why is Vibration Isolation Needed?

Transmissibility
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Attenuation Requirement 

Attenuation: the ratio of platform
motion to base motion
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To “follow” the base motion and prevent bumping at low frequencies, 
the isolation system must pass low frequency forces to the platform

Between 0.1 and 10 Hz, the attenuation must increase one order of
magnitude for every order of magnitude increase in frequency

Above 10 Hz, the attenuation must be 
greater than three orders of magnitude
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Single Degree Of Freedom (DOF) Example:

Spring-Mass-Damper
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The dynamic response of the mass to a base acceleration is a function of the 
system mass, stiffness, and damping.
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System Dynamics: Transmissibility

Transmissibility is the magnitude of the transfer function relating the 
acceleration (or position) of the mass to the base acceleration (or position).  The 
transmissibility specifies the attenuation of base motion as a function of 
frequency.  
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• Select spring stiffness, mass, and damping for attenuation
• Reduce break frequency by minimizing spring stiffness

Typically not desirable to increase isolated mass
• Select damping to trade between damped resonance and rate of 

attenuation
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Active Vibration Isolation

• Reduce the inertial motion of payload by sensing motion and 
applying forces to counter measured motion

• Active control can effectively change the system mass, 
stiffness, and damping as a function of frequency

• Whereas passive isolation only attenuates forces in passive 
elements, active control attenuates measured motion

• Only active control can mitigate payload response to 
payload-induced vibrations 

• Requires power, sensors, actuators, control electronics (analog 
and digital)
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Active Control Illustration
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Consider the transfer function from base position to mass displacement:
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Active Isolation Example

Consider the control law:

The resulting closed loop
transmissibility is:

and the closed loop natural frequency and damping become:
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Recall the Spring-Mass-Damper Example
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Passive Isolation Active Isolation
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• Real systems aren’t simple one degree of freedom lumped masses with 
discrete springs and dampers. 
• Control system design is a function of system properties which typically 
aren’t well known. 

The two key control design issues are performance and 
robustness. 

•Performance:  how well is isolation achieved?
•Robustness: how well are uncertainties tolerated by the control system?

Active Control Concepts

However, it isn’t as easy as it seems --
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Robustness and Performance
of a closed loop system are 
always in opposition
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Key Control Issues

» Robustness to uncertainties:

» umbilical properties

» structural flexibility

» mass and inertia variations

» sensor & actuator dynamics

» Performance:

» base motion attenuation

» payload disturbances

» forced excitation
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Control Challenges

» Robustness to uncertainties:

» umbilical properties

» structural flexibility

» mass and inertia variations

» sensor & actuator dynamics

Low Gain &/or
Low Bandwidth

» Performance:

» base motion attenuation

» payload disturbances

» forced excitation

High Gain

High Bandwidth
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g-LIMIT 6DOF, Baseline PID Controllers (X-axis)
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Base acceleration = 1.6 sin(0.01 hz*t)+16 sin(0.1 hz*t)+160 sin(1 hz*t)+1600 sin(10 hz*t)+16000 sin(100 hz*t)

g-LIMIT 6DOF, Acceleration Time Response (X-axis)
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Modern Control Approaches 
to 

Microgravity Vibration Isolation

Robust multivariable microgravity vibration control systems 
maximize performance for a specified bounded set uncertainties
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• Good nominal performance
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Generalized Plant for H2 Design
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g-LIMIT  H2 Control Design

• Objective: minimize H2 norm of closed loop from disturbances, w, 
to performance variables, z

w =

base acceleration

payload induced force

accelerometer noise

position sensor noise

z =

weighted control

weighted acceleration

weighted relative position

y =

platform acceleration

relative position

u = control actuators
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g-LIMIT 6 DOF H2 Design Performance
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Design for Robust Stability (RS): H∞ Methods:

• Suff ic ient  condit ion for  RS of  al l  plants  in the set  
para m eter ized  by  the  bounded m o d el errors                       

is 

• Performance  metr ic  is  the peak magni tude  o f  transfer  
funct ion – not  well  suited for  µg vibration isolat ion

• High order  control lers
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Design for Nominal Performance and Robust Stability 

Mixed H2 /H∞∞ Methods:

• Opt imizes  H 2 n o m i n a l  p e r f o r m a n c e

• Guarantees  H∞ robust  stabi l i ty 

• Opt imized contro l ler  o f  F IXED D I M E N S I O N

• Extremely  computat ional ly  in tens ive

• Object ive :
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m a x i m u m  r o b u s t n e s s
m i n i m u m  p e r f o r m a n c e

m a x i m u m  p e r f o r m a n c e
minimum robus tness

H 2

N o r m

H -Infini ty  Norm

• T h e uti l i ty  of  mixed norm design is  exploi ted by 
separat ing perfor m a n c e  and robustness  us ing the  
m o s t  appropriate  norm s

• A set  of  control lers  is  designed that  explic i t ly  trades 
b e t w e e n  R S  a n d  N P

• D e t e r m i n e  m a x i m um achievable  per for m a n c e subject  
to  robust  stabi l i ty  constraints
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Where Do We Go From Here?

First generation isolation systems are currently in flight demonstration 
phase

Once operational, will require significant sustaining engineering

• payload scheduled control design

• routine ongoing performance/stability analysis

• loss of science time

Second generation systems should provide better isolation performance 
in a more cost effective manner

• maximize isolation performance

• minimize payload impacts

• autonomous operation & optimization
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Neural Network Based Adaptive Control Systems

Accommodate payload uncertainties/variations 

• mass/inertia

• structural modes

• center of gravity

Biologically inspired technology

• autonomous adaptation

• reduces sustaining engineering

• maximize isolation performance

Significant technology transfer potential

Demonstrated in various aerospace vehicle applications
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Further Reading:
1. Grodsinsky C. and Whorton, M.,  “Survey of Active Vibration Isolation 

Systems for Microgravity Applications,” Journal of Spacecraft and 
Rockets, Vol. 37, No. 5, Sept. – Oct. 2000.

2. Knospe, C. R., Hampton, R. D., and Allaire, P. E., “Control Issues of
Microgravity Vibration Isolation,” Acta Astronautica, Vol. 25, No. 11, 
1991, pp. 687-697.

3. Kuo, Benjamin C.,  Automatic Control Systems, Prentice-Hall, 1987

4. Thomson, William T., Theory of Vibration With Applications, Prentice-
Hall, 1988.


